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The Widom�Rowlinson mixture is a two-component fluid in which like species
do not interact and unlike species interact via a hard-core repulsion. As the
density is increased, this fluid phase separates. Standard integral equation
approaches, such as the Percus�Yevick or hypernetted chain, or thermodynami-
cally self-consistent hybirds of these two, make very inaccurate predictions for
the location of this critical point in the three-dimensional model. In this article
we suggest a family of new approximations for this model that rely on incor-
porating terms in the density expansion of the direct correlation function into
the closure approximation. We show that the simplest of these closures is
significantly more accurate than previous theories for the structure and
thermodynamics of the fluid.

KEY WORDS: Widom�Rowlinsion; model; phase transition; diagrams;
integral equations; nonadditive hard sphere.

I. INTRODUCTION

The Widom�Rowlinson (WR) mixture(1) is a simple two component
(A and B) mixture where the interaction potentials are uAA=uBB=0, and
uAB(r)=� for r<_ and uAB(r)=0 for r>_. In three dimensions, and at
high densities, this fluid phase separates into an A rich and a B rich phase.
Since this model is athermal, the fluid separation, which is associated with
a critical point, is a purely entropic effect.

In the late 1970's one of us (GS) became interested in applying the
revised Enskog theory (RET) to the WR model, as part of a transport
theory study he was doing with John Karkheck(2). The RET requires
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accurate equations of state as input, for which Karkheck and Stell could
find no simulations results against which to test the thermodynamic
approximations then available for the WR model. Sometime thereafter
C. Hoheisel volunteered to obtain some molecular dynamic simulations
results to fill the gap, using a model in which the hard-core was replaced
by a smooth and steep repulsion, and subsequently he published the
results(3). (To his surprise and chagrin, GS found that he had been listed
as a co-author of this paper(3), and other publications(4), which he had not
even been aware had been submitted for publication.)

The relative simplicity of the interactions in the WR model make it an
attractive one to use for the study of critical phenomena, and this has
generated considerable interest in the model(5�9), as well as in a Gaussian
f-function version(10�12) and a lattice gas version (13�15). Despite it's apparent
simplicity, however, definitive results on the location and universality class
of the WR critical point were lacking until quite recently. Because the inter-
actions are short ranged with a simple binary symmetry, one would expect
the WR model to be Ising-like. However, the initial series analysis of the
Gaussian f-function version were disturbingly inconclusive(10, 11). The
Monte Carlo study of the lattice version of the WR model using finite-size
scaling analysis by Dickman and Stell(14) yielded the first compelling
evidence for Ising-like behaviour in such models. Recent series expansion
analyses of the Gaussian f-function version of the model(12) are also con-
sistent with Ising behaviour, and explain the source of ambiguities in the
earlier series analyses.

The first computer simulations that established the critical behaviour
of the continuum version of the model were performed by Shew and
Yethiraj (SY)(8) who obtained a critical density of \c_3=0.76\0.02.
(More recent simulations(9) using a different computer simulation
algorithm are in excellent agreement with this estimate.) This value for the
critical density was in strong disagreement with the estimate found in
Borgelt et al.(3) for which a critical density \c_3=0.41 was obtained. SY
also investigated a number of integral equation theories including the Percus�
Yevick (PY), hypernetted chain (HNC)(16) and Martynov�Sarkisov
(MS) (17) closure to the Ornstein�Zernike (OZ) equation, as well as
some self-consistent approaches including the Rogers�Young (RY)(18) and
Ballone�Pastore�Galli�Gazzillo (BPGG)(19) closures. They found that
none of these theories was accurate for the phase boundary or the pair
correlation functions.

In this work we present a new integral-equation approach to this
problem by including the first few terms in the density expansion of the
direct correlation function into the closure approximation. The simplest of
these approximations, in which the direct correlation function includes all
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terms up to the second power in the density, is significantly more accurate
than previous theories.

The rest of the paper is organized as follows: The theory is presented
in Section 2, a comparision with simulations is presented in Section 3, and
some conclusions are presented in Section 4.

II. THEORY

The OZ equation relates the total correlation functions, hij (r)#
gij (r)&1 to the direct correlation functions, cij (r) and, for a binary
mixture, may be written (in Fourier space) as

h� AA(k)=ĉAA(k)+\A ĉAA(k) h� AA(k)+\B ĉAB(k) h� AB(k) (1)

h� AB(k)=ĉAB(k)+\A ĉAA(k) h� AB(k)+\B ĉAB(k) h� BB(k) (2)

h� BB(k)=ĉBB(k)+\A ĉAB(k) h� AB(k)+\B ĉBB(k) h� BB(k) (3)

where the carets denote Fourier transforms. For the WR mixture hAB(r)=
&1 for r<_. Other ``closure'' relations between hij (r) and cij (r) must be
invoked in order to solve for the structure and thermodynamics. For
example, the PY closure(16), in terms of the function # ij (r)#hij (r)&cij (r),
is given by

cij (r)=[e&uij (r)�kT&1][1+# ij (r)] (4)

The density, \, and composition, ,, are defined by \=\A+\B , and
,=\A�\. _ is used as the unit of length in this paper.

The majority of closure approximations are not thermodynamically
consistent, i.e., different values are obtained from the virial and com-
pressibility routes. We therefore calculate two phase envelopes, and refer to
them as the binodal and spinodal curves. The binodal curve is obtained via
a double tangent construction to the virial free energy. For the WR model
this Helmholtz free energy, F, is given by

F=F IG+4?NkBT\_3,(1&,) |
1

0
! 2gAB(!_+) d! (5)

where N is the total number of atoms, kB is Boltzmann's constant, T is the
temperature, gAB(!_+) is the contact value of the pair correlation function
in a mixture with hard sphere diameter !_ and number density \, and F IG

is the ideal gas contribution to the free energy. The spinodal curve is

41Integral Equation Theory for the WR Mixture



defined as the locus of points where all the partial structure factors diverge,
i.e., where

4� (0)#1&\A ĉAA(0)&\B ĉBB(0)+\A \B(ĉAA(0) ĉBB(0)& ĉ2
AB(0))=0 (6)

Shew and Yethiraj(8) considered the PY and a number of other
closures and found that none of these were accurate for the phase
behaviour or structure of the liquid. Most approximations, such as the
HNC, MS, BPGG, or RY did not even converge near the critical point and
it was not possible to obtain the binodal curve. The least inaccurate of the
tested approximations was the venerable PY theory which predicted a criti-
cal density of \c_3=0.57 and 1.17 from the virial and compressibility
routes, respectively, which is not very close to the simulation results.

The main objective of this work is to develop closure approximations
that take into account the peculiar non-additive nature of the interactions
in the WR mixture. Our approach is to incorporate the first few terms in
the density expansion of the direct correlation functions into the closure
approximation. Some of the diagrams that appear in the density expansion
of cAA(r) and cAB(r) (for r>_) are show in Fig. 1. In the figure, the solid
lines are f-bonds and dashed lines are e-bonds, both drawn between circles
of different species (because fii (r)=0 and eii (r)=1). Unfortunately, none of
the diagrams in Fig. 1(a) or (c) can be evaluated exactly for the WR model
without numerical computation. On the other hand, all the diagrams in
Fig. 1(b) can be evaluated exactly. Our approach here is to include those
terms that we can evalute exactly. This gives,

cAB(r)=0, r>_ (7)

and

cAA(r)=exp[ \BO(r)]&\BO(r)&1 (8)

cBB(r)=exp[ \AO(r)]&\AO(r)&1 (9)

for all r, where O(r) is the overlap integral,

O(r)=
4?
3 _1&

3
4

r
_

+
1
2 \

r
2_+

3

& (10)

The exact core condition, gAB(r)=0 for r<_ is still used, of course. The
present work therefore includes all diagrams to second order in the density
and some other diagrams of higher order.
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Fig. 1. Diagrams that appear to fifth order in the density in the expansion of the direct
correlation functions: (a) Diagrams in cAB(r) (for r>_), (b) Diagrams in cAA(r) (or cBB(r),
for all r) that can be evaluated analytically, and (c) Diagrams in cAA(r) that cannot be
evaluated analytically. Solid lines are f-fonds, dashed lines are e-bonds, and all bonds connect
circles of different species.

III. RESULTS

Figure 2 compares theoretical predictions for the phase diagram of the
Widom�Rowlinson mixture to computer simulations(8). The solid and dot-
dashed lines are, respectively, the binodal and spinodal curve predicted by
the theory of this work. The dashed line is the binodal curve predicted by
the PY theory. Both theories considered significantly underestimate the
critical density from the virial route (binodal) although the present theory
is somewhat more accurate than the PY theory. The critical density
obtained from the compressibility rout is in excellent argreement with the
simulation results in contrast to the PY theory in which the compressibility
route significantly overestimates the critical density. This is shown in Fig. 3
which compares predictions of this work to the PY theory of the
denominator of the partial structure factors at zero wavevector, 4� (0), as a
function of density for ,=0.5. (The compressibility route critical point
occurs at the density where 4� (0)=0.) The PY prediction is \_3

r1.17,
which is quite a large density. The new theory therefore has two advantages
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Fig. 2. Phase diagram of the Widom�Rowlinson mixture from simulations(8) (symbols),
theory of the present work (��) and the PY theory (---). The dot-dashed line is spinodal curve
from the theory of this work.

over the PY theory: It is more accurate for the location of the critical
point, and it is more thermodynamically consistent.

Figures 4(a)�(c) compare the pair correlation functions obtained from
theory to computer simulations(8) for \_3=0.65, ,=0.11, \_3=0.65,
,=0.5, and \_3=0.85, ,=0.11, respectively. The first two cases are at
different concentrations in the one-phase region, and the third is a state
point right at the coexistence curve. In all three figures, the pair correlation

Fig. 3. Comparison of the 4� (0) from the PY theory (---) to the theory of this work (��). The
critical point from the fluctuation rout occurs at 4� (0)=0.
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Fig. 4. Comparison of pair correlation functions from simulations (symbols) to predictions
of this work (��) and the PY theory (---) for (a) \=0.65 and ,=0.11, (b) \=0.65 and
,=0.50, and (c) \=0.85 and ,=0.11 (i.e. at two-phase coexistence). Note that a logarithmic
scale is used for the ordinate in parts a and c.
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functions are monotonic, i.e. there is no layering evident, and at short dis-
tances there is a clustering of like species and a deplection of unlike species.
This is to be expected because the atoms of the like species would like to
avoid the hard cores of the other species. The theory of this work is in
excellent agreement with the computer simulations in all cases. There is a
considerable improvement over the PY theory which significantly under-
estimates the value of the pair correlation functions between like species at
all conditions.

IV. CONCLUSIONS

An integral equation theory is presented for the structural and ther-
modynamic properties of the Widom�Rowlinson mixture. The theory
incorporates the terms in the density expansion of the direct correlation
function that can be evaluated exactly into the closure approximation. The
theory is in good agreement with computer simulations for the pair correla-
tion functions and phase diagram although there is room for improvement.

There are several possible ways to improve the performance of the
theory with additional computational complexity. Although none of the
diagrams in Figs. 1(a) and 1(c) can be evaluated analytically for the WR
model, all of them can be evaluated exactly if the f-function were a
Gaussian. If f (r)=exp(&:r2), for example, the diagrams can be evaluated
and : adjusted by requiring &� f (r) dr=4?_3�3. This should provide a
more accurate theory for the model. Further improvement could be
obtained by imposing internal thermodynamic consistency, i.e. setting
cij (r)=*c0

ij (r) outside the core (where c0
ij (r) are evaluated from the

diagrammatic expansion) and choosing * so that the compressibility and
virial pressures are equal. The results of this work suggest that such a
program could prove to be fruitful if an accurate theory for the WR model
is desired.
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